System FC, as implemented in GHC!
23 October, 2015

1 Introduction

This document presents the typing system of System FC, very closely to how it is implemented in GHC. Care
is taken to include only those checks that are actually written in the GHC code. It should be maintained
along with any changes to this type system.

Who will use this? Any implementer of GHC who wants to understand more about the type system can look
here to see the relationships among constructors and the different types used in the implementation of the
type system. Note that the type system here is quite different from that of Haskell—these are the details of
the internal language, only.

At the end of this document is a hypothetical operational semantics for GHC. It is hypothetical because
GHC does not strictly implement a concrete operational semantics anywhere in its code. While all the
typing rules can be traced back to lines of real code, the operational semantics do not, in general, have as
clear a provenance.

There are a number of details elided from this presentation. The goal of the formalism is to aid in reasoning
about type safety, and checks that do not work toward this goal were omitted. For example, various scoping
checks (other than basic context inclusion) appear in the GHC code but not here.

2 Grammar

2.1 Metavariables

We will use the following metavariables:

z,c Term-level variable names

a, B Type-level variable names

N Type-level constructor names
M Axiom rule names

i, 7, k, a, b, ¢ Indices to be used in lists

2.2 Literals

Literals do not play a major role, so we leave them abstract:
lit = Literals, basicTypes/Literal.lhs:Literal

We also leave abstract the function basicTypes/Literal.lhs:1iteralType and the judgment coreSyn/CoreLint.lhs:1intTyLit
(written T Ry lit :).

2.3 Variables

GHC uses the same datatype to represent term-level variables and type-level variables:

z = Term or type name
| « Type-level name

I This document was originally prepared by Richard Eisenberg (eir@cis.upenn.edu), but it should be maintained by anyone
who edits the functions or data structures mentioned in this file. Please feel free to contact Richard for more information.

1

T Term-level name

n, m, o, T = Variable names, basicTypes/Var.lhs:Var
| 27 Name, labeled with type/kind

We sometimes omit the type/kind annotation to a variable when it is obvious from context.

2.4 Expressions

The datatype that represents expressions:

e, u = Expressions, coreSyn/CoreSyn.lhs:Expr
| n Var: Variable
| it Lit: Literal
| €1 e App: Application
| An.e Lam: Abstraction
| letbindingine Let: Variable binding
| caseeasnreturnTof alt;’ Case: Pattern match
| ey Cast: Cast
| €{tick} Tick: Internal note
| 7 Type: Type
| y Coercion: Coercion

There are a few key invariants about expressions:

e The right-hand sides of all top-level and recursive lets must be of lifted type.

e The right-hand side of a non-recursive let and the argument of an application may be of unlifted type,
but only if the expression is ok-for-speculation. See #let_app_invariant# in coreSyn/CoreSyn.lhs.

e We allow a non-recursive let for bind a type variable.

e The . case for a case must come first.

e The list of case alternatives must be exhaustive.

e Types and coercions can only appear on the right-hand-side of an application.

e The 7 form of an expression must not then turn out to be a coercion. In other words, the payload
inside of a Type constructor must not turn out to be built with CoercionTy.

Bindings for let statements:

= Let-bindings, coreSyn/CoreSyn.lhs:Bind
\ n=e NonRec: Non-recursive binding
\ Rec: Recursive binding

binding

Case alternatives:

alt = Case alternative, coreSyn/CoreSyn.lhs:Alt
| Kn;* — e Constructor applied to fresh names

Constructors as used in patterns:

K n= Constructors used in patterns, coreSyn/CoreSyn.lhs:A1tCon
| K DataAlt: Data constructor
| it LitAlt: Literal (such as an integer or character)

. DEFAULT: Wildcard
Notes that can be inserted into the AST. We leave these abstract:

tick n= Internal notes, coreSyn/CoreSyn.lhs:Tickish
A program is just a list of bindings:
program = _ A System FC program, coreSyn/CoreSyn.lhs:CoreProgram
| binding; List of bindings
2.5 Types
T, K, O, ¢ BES Types/kinds, types/TyCoRep.lhs:Type
| n TyVarTy: Variable
| mim2 AppTy: Application
| T7;" TyConApp: Application of type constructor
| TL — Ty ForAllTy (Anon ...) ...: Function
| Vn.t ForAllTy (Named ...) ...: Type and coercion polymorphism
| it LitTy: Type-level literal
| 71>79 CastTy: Kind cast
| ol CoercionTy: Coercion used in type

ForAllTys are represented in two different ways, depending on whether the ForA11Ty is anonymous (written
71 — T2) or named (written Vn.7).

There are some invariants on types:

e The name used in a type must be a type-level name (TyVar).

e The type 71 in the form 7 75 must not be a type constructor 7. It should be another application or a
type variable.

e The form T7; % (TyConApp) does not need to be saturated.

e A saturated application of (—) 71 72 should be represented as 71 — 72. This is a different point in the
grammar, not just pretty-printing. The constructor for a saturated (—) is ForA11Ty.

e A type-level literal is represented in GHC with a different datatype than a term-level literal, but we
are ignoring this distinction here.

e A coercion used as a type should appear only in the right-hand side of an application.

Note that the use of the T7; ¢ form and the 7, — 7o form are purely representational. The metatheory
would remain the same if these forms were removed in favor of 71 7. Nevertheless, we keep all three forms
in this documentation to accurately reflect the implementation.

The Named variant of a Binder (the first argument to a ForAllTy) also tracks visibility of arguments.
Visibility affects only source Haskell, and is omitted from this presentation.

We use the notation 7 ”1~;2 Ty to stand for (~g) K1 Ko T1 To.

2.6 Coercions

Y, N = Coercions, types/TyCoRep.lhs:Coercion
| (), Refl: Reflexivity

T,7v"

Y172

Vzin.y

n

Cind7;"
prov <7—1a TQ>Z
sym-sy

TyConAppCo: Type constructor application
AppCo: Application

ForAl1Co: Polymorphism

CoVarCo: Variable

AxiomInstCo: Axiom application

UnivCo: Universal coercion

SymCo: Symmetry

Y1 § Y2 TransCo: Transitivity

uTi A AxiomRuleCo: Axiom-rule application (for type-nats)
nth’ NthCo: Projection (0-indexed)

LorR~ LRCo: Left/right projection

~@n InstCo: Instantiation

YN CoherenceCo: Coherence

kind KindCo: Kind extraction

sub~y SubCo: Sub-role — convert nominal to representational

Invariants on coercions:

e (11 72), is used; never (11), (T2)y-

e If (T) isapplied to some coercions, at least one of which is not reflexive, use 7,%; ¢, never (T') PRI C R

p

e The T in TpWi is never a type synonym, though it could be a type function.

e Every non-reflexive coercion coerces between two distinct types.

The name in a coercion must be a term-level name (Id).

The contents of (1) , must not be a coercion. In other words, the payload in a Ref1l must not be built
with CoercionTy.

The UnivCo constructor takes several arguments: the two types coerced between, a coercion relating these
types’ kinds, a role for the universal coercion, and a provenance. The provenance states what created the
universal coercion:

UnivCo provenance, types/TyCoRep.lhs:UnivCoProvenance

prov =
| unsafe From unsafeCoerce#
| phant From the need for a phantom coercion
| irrel From proof irrelevance

Roles label what equality relation a coercion is a witness of. Nominal equality means that two types are iden-
tical (have the same name); representational equality means that two types have the same representation (in-
troduced by newtypes); and phantom equality includes all types. See http://ghc.haskell.org/trac/ghc/
wiki/Roles and http://research.microsoft.com/en-us/um/people/simonpj/papers/ext-£f/coercible.
pdf for more background.

P n= Roles, types/CoAxiom.lhs:Role
| N Nominal
| R Representational
| P Phantom

Is it a left projection or a right projection?

LorR left or right deconstructor, types/TyCoRep.lhs:Left0rRight
CLeft: Left projection

right CRight: Right projection

Axioms:

C BES Axioms, types/TyCon.lhs:CoAxiom
| T, axBranch; ’ CoAxiom: Axiom

axBranch, b = Axiom branches, types/TyCon.lhs:CoAxBranch
| Vi, ' (757 ~ o) CoAxBranch: Axiom branch

The left-hand sides Tjj of different branches of one axiom must all have the same length.

The definition for azBranch above does not include the list of incompatible branches (field cab_incomps of
CoAxBranch), as that would unduly clutter this presentation. Instead, as the list of incompatible branches
can be computed at any time, it is checked for in the judgment no_conflict. See Section 4.16.

Axiom rules, produced by the type-nats solver:

w n= CoAxiomRules, types/CoAxiom.lhs:CoAxiomRule

| M 573 o1 Named rule, with parameter info

An axiom rule g = M; 573 pry is an axiom name M, with a type arity i, a list of roles pﬁ-j for its coercion
parameters, and an output role p’. The definition within GHC also includes a field named coaxrProves which
computes the output coercion from a list of types and a list of coercions. This is elided in this presentation,
as we simply identify axiom rules by their names M. See also typecheck/TcTypeNats.lhs:mkBinAxiom and
typecheck/TcTypeNats.lhs:mkAxioml.

In Co_Un1vCo, function compatibleUnBoxedTys stands for following checks:

e both types are unboxed;

types should have same size;

both types should be either integral or floating;

coercion between vector types are not allowed;

unboxed tuples should have same length and each element should be coercible to appropriate element
of the target tuple;

For function implementation see coreSyn/CoreLint.lhs:checkTypes. For futher discussion see https://ghc.
haskell.org/trac/ghc/wiki/BadUnsafeCoercions.

2.7 Type constructors

Type constructors in GHC contain lots of information. We leave most of it out for this formalism:

T Type constructors, types/TyCon.lhs:TyCon

| (=) FunTyCon: Arrow

| N® AlgTyCon, TupleTyCon, SynTyCon: algebraic, tuples, families, and synonyms
| H PrimTyCon: Primitive tycon

| 'K PromotedDataCon: Promoted data constructor

We include some representative primitive type constructors. There are many more in prelude/TysPrim.lhs.

= Primitive type constructors, prelude/TysPrim.lhs:
| Inty Unboxed Int (intPrimTyCon)
| (~%) Unboxed equality (eqPrimTyCon)

(~R#) Unboxed representational equality (eqReprPrimTyCon)

|

| = Kind of lifted types (1iftedTypeKindTyCon)

| # Kind of unlifted types (unliftedTypeKindTyCon)
| OpenKind Either * or # (openTypeKindTyCon)

| Constraint Constraint (constraintTyCon)

| TYPE TYPE (tYPETyCon)

| Levity Levity (LevityTyCon)

Note that although GHC contains distinct type constructors x and Constraint, this formalism treats only
*. These two type constructors are considered wholly equivalent. In particular the function eqType returns

True when comparing x and Constraint. We need them both because they serve different functions in source
Haskell.

TYPE The type system is rooted at the special constant TYPE and the (quite normal) datatype data
Levity = Lifted | Unlifted. The type of TYPE is Levity — TYPE ’Lifted. The idea is that TYPE'Lifted
classifies lifted types and TYPE’Unlifted classifies unlifted types. Indeed * is just a plain old type synonym
for TYPE'Lifted, and # is just a plain old type synonym for TYPE'Unlifted .

3 Contexts

The functions in coreSyn/CoreLint.lhs use the LintM monad. This monad contains a context with a set of
bound variables I'. The formalism treats I'" as an ordered list, but GHC uses a set as its representation.

r n= List of bindings, coreSyn/CoreLint.lhs:LintM
| n Single binding
| I‘Tz Context concatenation

We assume the Barendregt variable convention that all new variables are fresh in the context. In the
implementation, of course, some work is done to guarantee this freshness. In particular, adding a new
type variable to the context sometimes requires creating a new, fresh variable name and then applying a
substitution. We elide these details in this formalism, but see types/Type.lhs:substTyVarBndr for details.

4 Typing judgments

The following functions are used from GHC. Their names are descriptive, and they are not formalized
here: types/TyCon.lhs:tyConKind, types/TyCon.lhs:tyConArity, basicTypes/DataCon.lhs:dataConTyCon,
types/TyCon.lhs:isNewTyCon, basicTypes/DataCon.lhs:dataConRepType.

4.1 Program consistency

Check the entire bindings list in a context including the whole list. We extract the actual variables (with
their types/kinds) from the bindings, check for duplicates, and then check each binding.

Forog Program | Program typing, coreSyn/CoreLint.lhs:1intCoreBindings
I' = vars_of bmdingii

no_duplicates binding; ’
T Foing binding; "

: PRrROG_COREBINDINGS
T 1
Forog Dinding;

Here is the definition of vars_of , taken from coreSyn/CoreSyn.lhs:binders0f:

varsof n = e =n
vars.of recm; = ¢,° =m;"

4.2 Binding consistency

T hping binding | Binding typing, coreSyn/CoreLint.lhs:1int bind

I' Fbing m €

BINDING_NONREC
I'hingn=c¢

= e
bind 1li < €;
e ¢ ‘ BINDING_REC

I bying recm; = ¢;°

Single binding typing, coreSyn/CoreLint.lhs:1intSingleBinding

I'hkme:r
'k 27 ok
;' = fu(7)
m; € F’L

————— SBINDING_SINGLEBINDING
I Kpind 27 <€

In the GHC source, this function contains a number of other checks, such as for strictness and exportability.
See the source code for further information.

4.3 Expression typing

Expression typing, coreSyn/CoreLint.lhs:1intCoreExpr

zm e
= (311, T2, K1, ke .t T =T "1~;2 To)

TM_VAR
I'kmz7:7
7 = literal Type lit
TMm_LiT
Thkmlit: 7
I'kme:o
Ihoy:oM~g?T
€ {x,
ra € {x#) TMm_CAST
I'kme>py:T

IThme:T

T Fim €tick) i T TM_TICK
I’ = F, o
I' k & ok
I’ Eubst o — o ok
I"hmela® —=o]: T
TM_LETTYKI

I1|_tm letaﬁzaine:T

[Fpind 7 <= u
F}_tyO':K]
ﬁ:‘k\/,‘{:#

F’ z7 H:m e:. T
TM_LETNONREC

I'gmletz? =uine: 7

IT = inits (2,7 ")
Ki =% VK, =F#
no_duplicates 7z
V=T, z°"

T Fepind 27 < U;
I’ }_tm e. T

—— .
I'bkmletrecz% = u;"ine: 7

%

TM_LETREC

r l_tm e:Yar.r

'k ks o ok
subst (¥ o T

T'hmeo: T[ar — d]

— (EIT sS.t. €y = 7')
Phmer:m — 7

F }_m € . T
- TM_APPEXPR

I‘l_tm €1 €2 . Ty

- (37—1,7—27 K1, K2 s.t. k = ial K1 N;Z 7_2)

'y 7:k
F7x7'_tm610'

TMm_LAaMID
Thm Az7.6:7 =0
' K ok
F’ a” l_tm e.T
TMmM_LAMTY

r hm Aar.e :VYar. T

¢ =01"~0E oo

I' i ¢ ok

Lot bme:m TM_LaMCo
Ibm Ac?.e:Vet.r -

I'kme:o

oc=xVo=4%#

'k, 7:TYPEO, _

T, 290 by alt; - T

TM_CASE

— 1
I' kn casecas z? returnTof alt; : 7

T |— . T1 K1 K2 T2
co N TM_COERCION

[hm oy i1 min e

Doy T Mg 7o

TM_COERCIONREP
I bm v i (~Ry) K1 K2 T1 T2

e Some explication of TM_LETREC is helpful: The idea behind the second premise (I',T" i, 0y : K; Z)

is that we wish to check each substituted type o} in a context containing all the types that come
before it in the list of bindings. The I, are contexts containing the names and kinds of all type
variables (and term variables, for that matter) up to the ith binding. This logic is extracted from

coreSyn/CoreLint.lhs:1intAndScopeIds.

e The GHC source code checks all arguments in an application expression all at once using coreSyn/CoreSyn.lhs:collectAr
and coreSyn/CoreLint.lhs:1intCoreArgs. The operation has been unfolded for presentation here.

e If a tick contains breakpoints, the GHC source performs additional (scoping) checks.

e The rule for case statements also checks to make sure that the alternatives in the case are well-formed
with respect to the invariants listed above. These invariants do not affect the type or evaluation of the
expression, so the check is omitted here.

e The GHC source code for TM_VAR contains checks for a dead id and for one-tuples. These checks are
omitted here.

4.4 Kinding

Kinding, coreSyn/CoreLint.lhs:1intType

2z el

—— Ty_TyVART
Thy 7 r Y_TYVARTY

Fl_tyTlllil
Fl—tyTQIKQ
T bpp (T2t K2) 1 K1~ K

Ty_AprrPTY
gy mim:k
T '_ty T1 - K1
T I_ty T2 : K9
'k — :
- M n2 B Ty_FunTy

'y —=m:k

= (isUnLiftedTyCon T') v length 7; ¢ = tyConArity T
T bpp (T30 Ks) tyConKirﬁ ,T ~ K Ty TvCoNAPP
'y T7' ik

r }‘[(K1 ok

I zf kg 7: TYPEC
~ (2 € fu(0))

'y, Vzrrr : TYPEo

Ty_ForRALLTY

T l_tylit lit:
——— Tvy_LitTy
Phylit: s
Iy 7k
T beo v 2 i1 * ~4
TR N2 Ty_CasTTY

IRy 779K

Doy Mg’ T2

Tvy_COERCIONTY_NOM
Fkyv:n ’”"1~;2 T2

Do y:m Mg

TyY_COERCIONTY_REPR
Iy v (~Rg) K1 K2 T To

4.5 Kind validity

Kind validity, coreSyn/CoreLint.lhs:1intKind

My sk

10

IRy k:#

———— K_Has
' k ok H

4.6 Coercion typing

In the coercion typing judgment, the # marks are left off the equality operators to reduce clutter. This is
not actually inconsistent, because the GHC function that implements this check, 1intCoercion, actually
returns five separate values (the two kinds, the two types, and the role), not a type with head (~4) or (~ry).
Note that the difference between these two forms of equality is interpreted in the rules Co_.CoVARCONOM
and Co_COVARCOREPR.

oy :m ™~z ‘ Coercion typing, coreSyn/CoreLint.lhs:1intCoercion

gy 7:8

I' o <T>p:7'"“~g7'

CO_REFL

’

K
Ty o1 Hlel T1

’

K

Fl—co '}/Q:UQKQNPQTQ
FF_>I€14)IQQSI€
/ ’oL
I k] =Ky 1R

- Co_TyCoNAPPCOFUNTY
[Fo (=712 (01 = 02) ol (11— T2)

T 4 () |
pi" = take(length¥;*, tyConRolesX p T')

o it 0y ’{;f\f',fj T

I Rpp ml : tyConKind T ~~ k'

IR ml s tyConKind T ~ &
Pheo T,7": Ty W g T

Co_TyConAprprCo

I'heoy1oo1™~p2 oo
Moy '{,1’“;2 T2
T bpp (111 KY) @ K1~ K3
I bGpp (T2 1 KY) 1 Ko~ Ka

I'o 172 1 (0171) "3t (02 T2)

Co_ArrCo

. K
I'eo 1 i 01 ™M~p? 02
’ K
I'eo v2 1 11 "1vp? 1o
A
]-—w_app (’7’1 .Iil) I R1 ™™ R3

I bpp (T2 @ Kh) : K ~ Ky

Lo m172: (01 71) F3~pt (02 T2)

Co_ArrPCOPHANTOM

11

. * *
Do n iRy ™~y K2
| R s R

T ko Vany o (Vzrrmy) #3mop? (Vzr2 (1o [2 — 252 > sym 1))

22 €T
¢=T1"~E T

I'o 2201 M To

22 €T
¢ =TI RYy T

[2% 11 Mg T2

Do n: k1™~ Ko

r l_ty T1 + R1

T l—ty T2 . K9

p < PV = (classifiesTypeWithValues 1)V

— (classifiesTypeWithValues k2) V compatibleUnBoxed Tys 71 72

n. K2
r '_co unsafe<7—177—2>p tT1 Kl’\“p T2

Do n Ry ™~y K2
thT11I€1
'y 1o Ko

K2

n.
' phant<7_1a 7_2>p DT Mt Ty

[on: @1~y @2
I-‘l_'cy')/lz(bl

Co_ForALLCoO

Co_CoVArRCoONoOM

Co_CoVARCOREPR

Co_UNIVCOUNSAFE

Co_UNivCOPHANTOM

I'k :
by 72 92 Co_UNIVCOPROOFIRREL

r h:o irrel <’Yla 72>Z G| o N?Z Y2

Dhov:m ™~ T

Co_SymCo

ko symy i mf2npt 7y

Moy im ™~p2m
Fheov2 i T2 ™2~p3 73

o . K
' Y1972 T Nl"\’p3

73

12

Co_TransCo

[heoy: (T777) "~ (T757)
length ;7 = length7;7

i < lengtho;J

'Ry oy ke

I'ky 7 0 KY

= (Fy st. 0, =7)

2 (Fy st =7)

p’ = (tyConRolesX p T)[i]

- p Co_NTHCOTYCON
[k nth* vy 1oy 72~ 2 7

Mo (Vzl'“ .7'1) HE’N'Z“ (VZ2H2.7—2)

It ntho’yilﬂ*’vﬁ Ko

Co_NTHCOFORALL

T ko v 2 (01 02) *~f (11 72)
'Ry o1: k1

I'ky 71Ky
— Co_LRCoLEFT
o lefty r oy Fivt 1

r '_co v (0’1 0'2) HNﬁ/(Tl 7'2)
T l_ty 092 : R2

I'ky 72t K

= (Fy st 02 =7)

= (Fyst. o=
By st 7 =) 7 Co_LRCoORIGHT

T beo righty : o 2~ 7

I'ko v (Vzl'“ .’7'1) 'W’NZ“ (VZQH2.7—2)
T heo 1 01 "oy’ 02
[o 7@Qn : (1121 = 01]) "3~vpt (To] 2272 > 02])

Co_InstCo

C = T,, azBranchy "

0 < ind < length azBranchy "

Vgt (3137 ~ 1) = (aeBranch; ")[ind]
[bk [T, * = i '] ~ (substy, substz)

024 = substl(alj)J

no_conflict(C, ;7 , ind, ind — 1)
To = substa(11)

g9 = TTQJ]

I'kyoo:k

Iy kK
Co_AxioMINSTCO

. — . i
ko Cind7;* : o9 s To

13

Pheoy:im M2 m

I'ky 1>k
Y ! Co_COHERENCECO

2

FFCO'ybn:ﬁDn”’lNg Ty

Mkoy:m b2
T " 2 6o KinnCo

I o kindy 0 51 * ~§ K2

’
Foy:io™~yT

Co_SuBCo

Iiosuby:o® ~ET

n= Mz
Iy 75t ks

J
I ,.O.VH]”NHJ,O.I
coVj T p; 9)
— a7 N
!/ r\ 7 /
Just (1, 73) = coaxrProves u7;* (0, 0%)
I'ky 71 Ko

Tk, 75 K/
ty 12 - ™0 Co_AxioMRULECO

i — K{
Db pit 757 s mp o 0 1

See Section 4.15 for more information about tyConRolesX, and see Section 2.6 for more information about
coaxrProves.

4.7 Name consistency

There are two very similar checks for names, one declared as a local function:

Name consistency check, coreSyn/CoreLint.lhs:1intSingleBinding#lintBinder

Ik 7:k
K=%VK==%#
NaME_ID
'k x27 ok
——— NAME_TYVAR
'k af ok

Binding consistency, coreSyn/CoreLint.lhs:1intBinder

gy 7:k

k=% VK=+% B ol
INDING_ID

I' lpng 27 ok

14

I' k k ok

———— BINDING_TYVAR
T }_bnd a® ok

4.8 Substitution consistency

‘ IMkwssn— 71 ok‘ Substitution consistency, coreSyn/CoreLint.lhs:1intTyKind

Pky7:8
SUBST_TYPE

I l_subst 2R =T Ok

4.9 Case alternative consistency

ok alt: 7 Case alternative consistency, coreSyn/CoreLint.lhs:1intCoreAlt

I'kme:r

ALT_DEFAULT
Iiobkre —e:r

o = literal Typelit
I'bkme:T

Fiohkelit > e: 7 ALT-LITALT
T = dataConTyCon K
- (isNewTyCon T)
71 = dataConRepType K
7 =7n{0;" }
T Fpod 7; OK
=T, m'
I Baitond 7 * 7o~ T 757
Vhme:T

ALT_DATAALT

F;T?jjb|tKﬁii —e:T

4.10 Telescope substitution

Telescope substitution, types/Type.lhs:applyTys

AprpPLYTYS_EMPTY

=0

15

T =r{7i"}
"' =7'[n— o]

: ApPPLYTYs_ Ty
7 = (VYn.7){o,5;"}

4.11 Case alternative binding consistency

‘ I" Ritbnd vars : 71 ~> 7o ‘ Case alternative binding consistency, coreSyn/CoreLint.lhs:1intAltBinders

ALTBINDERS_EMPTY

I'Hitbnd -7~ 7

r Fsubst 6H/ — o ok
T Faitbnd 7572 7[5 @] ~ @

— - ALTBINDERS_TYVAR
I Biong @, 73" 2 (VBR'.7) ~> 0

T Ritond 7 02 T[22 5 ¢?] ~ 0

— ALTBINDERS_IDCOERCION
L hitbnd €%, 7" 1 (V20.7) > 0

F|_|tbdﬁi:7'2~‘->0'
aone ALTBINDERS_IDTERM

T Bitond 2™, T " 2 (11 = T2) ~ 0

4.12 Arrow kinding

‘F F, k1 — Ko Ii‘ Arrow kinding, coreSyn/CoreLint.lhs:1intArrow

K1 S {*a#}
K9 =TYPEo

I, k1 — Ko i %

ARROW_KIND

4.13 Type application kinding

)

I bpp (04 1 Ki) K1~ ko | Type application kinding, coreSyn/CoreLint.lhs:1int_app

- AprP_EMPTY
IMhpp -t 6~ K

16

'k Tiiliiiili ~s K
e () 2 ArPP_FUNTY

T bapp (72 1), (7s - Fa) 2 (1 — Fi2) ~ K/

T bapp (it R0) a2 o 7] = &
pp (T) 2 7] AprP_FORALLTY

T bapp (7 K1), (73 5 Fig) : (V251h5) =

4.14 Axiom argument kinding

T bk [Mp; " > 7] ~ (substy, substy) | Axiom argument kinding, coreSyn/CoreLint.lhs:check ki

AX1IoMKIND_EMPTY

r }_axk [=] ~ (7)

I' bk [Wl —] ~ (substy, substy)
n=z"

bsta(k)
T koo o @y Subst (k) Juost2ls) o)
«© o AXIOMKIND_ARG

I [Tmi, N, — 7, %0] ~» (subst; [n +— 71|, substy [n — T2])

4.15 Roles

During type-checking, role inference is carried out, assigning roles to the arguments of every type constructor.
The function tyConRoles extracts these roles. Also used in other judgments is tyConRolesX, which is the same
as tyConRoles, but with an arbitrary number of N at the end, to account for potential oversaturation.

The checks encoded in the following judgments are run from typecheck/TcTyClsDecls.lhs:checkValidTyCon
when -dcore-1lint is set.

validRoles T'| Type constructor role validity, typecheck/TcTyClsDecls.lhs:checkValidRoles

Ei = tyConDataCons T'

p;? = tyConRoles T

vaIichRoIespT-j K; ’
validRoles T'

CvR_DATACONS

validDcRolesp, * K| Data constructor role validity, typecheck/TcTyClsDecls.lhs:check_dc_roles

Vg VT 7 — T = dataConRepType K

b
Mg - Patymy N ey 7t R

A
validDcRoles p, @ K CbR-ARGS

17

In the following judgment, the role p is an input, not an output. The metavariable €2 denotes a role context,
as shown here:

Q n= _ Mapping from type variables to roles
| Mg © p7 " List of bindings

Qbku 7:p| Type role validity, typecheck/TcTyClsDecls.lhs:check_ty_roles

Q(n) = of
P<p

————— CTtrR_TYVARTY
Qb n: p

7" = tyConRoles T _
pi € (INR} = Qkymiipi
Qby T7°:R

CTR_TYCONAPPREP

i

Qb N

—————— CTr_TYyCoNAPPNOM
Qb TT":N

Ql_ctrTl:p
Qb N

— = Ctr_APPTY
Qe mim:p

Qe mip

Q by T2
w72 P CTrR_FUNTY

Qb —T2:p

Q.n: Nk :
" P CrR_FORALLTY

Qbky Vnr:p
- _LitT
Qo Tt CTrR_LITTY
Qb 70
e T P Grr_CasTTY
Q |_ctr T l>’)’ P

——— CTR_COERCIONTY
Qberv: P

These judgments depend on a sub-role relation:

18

Sub-role relation, types/Coercion.lhs:1tRole

RLT_NOMINAL

N <p
RLT_PHANTOM
p<P
— RLT_REFL
pP=p

4.16 Branched axiom conflict checking

The following judgment is used within Co_AX10MINSTCO to make sure that a type family application cannot
unify with any previous branch in the axiom. The actual code scans through only those branches that are
flagged as incompatible. These branches are stored directly in the azBranch. However, it is cleaner in this

presentation to simply check for ¢

no_conflict(C, ;7 , indy, inds)

ompatibility here.
Branched axiom conflict checking, types/OptCoercion.lhs:checkAxInstCo
and types/FamlInstEnv.lhs:compatibleBranches

NoCoNFLICT_NOBRANCH

no_conflict(C, &; ¢, ind, —1)

C = T, axBranchy, F

Vi, (77~ 7') = (azBranchy, g)[inds]
apart (o;7, 757)

no_conflict(C, ;7 , indy, indy — 1)

no_conflict(C, ;7 , ind,, inds)

C = T, axBranch, F

VnTml (757 ~ o) = (azBranchy, g)[ind;]
Vg, (?;J ~ ¢') = ((axBranchy, g)[inds]
apart (757, 77")

no_conflict(C, 357 , indy, indy — 1)

no_conflict(C, 757 , ind;, indz)

C = T, azBranch; "

Wit ' (759~) = (azBranchy ")[indy]
Vil (77~ o') = (axBranchy ")inds)
unify (757, 7'7]) = subst

subst(o) = subst(o’)

no_conflict(C, &;7 , indy, inds)

19

NOCONFLICT_INCOMPAT

NOCONFLICT_-COMPATAPART

NOCONFLICT_-COMPATCOINCIDENT

The judgment apart checks to see whether two lists of types are surely apart. apart(7;°, @;*), where 7;°
is a list of types and ;' is a list of type patterns (as in a type family equation), first flattens the 7;°
using types/FamlInstEnv.lhs:flattenTys and then checks to see if types/Unify.lhs:tcUnifyTysFG returns
SurelyApart. Flattening takes all type family applications and replaces them with fresh variables, taking
care to map identical type family applications to the same fresh variable.

The algorithm unify is implemented in types/Unify.lhs:tcUnifyTys. It performs a standard unification,
returning a substitution upon success.

5 Operational semantics

5.1 Disclaimer

GHC does not implement an operational semantics in any concrete form. Most of the rules below are implied
by algorithms in, for example, the simplifier and optimizer. Yet, there is no one place in GHC that states
these rules, analogously to CoreLint.lhs. Nevertheless, these rules are included in this document to help
the reader understand System FC.

5.2 The context X

We use a context X to keep track of the values of variables in a (mutually) recursive group. Its definition is

as follows:
Y ou= | X [ne e

The presence of the context ¥ is solely to deal with recursion. If your use of FC does not require modeling
recursion, you will not need to track .

5.3 Operational semantics rules

Yhpe—¢€ Single step semantics

YX(n)=-¢e
Yhpn—e

S_VAR

Ehper — 1 S_App

Yhpe1ea —> ef e

S_BETA
Y hp (An.e1) eg — e1 [n — e

Yo = sym (nth”)

v = nth17
—drst.e =1
-3y st eg =7

S_PusH

Y hp (An.er)>v) e2 — (An.e1 >71) (e2>70)

20

S_ TP
Yhp (Ane)py) T — (An.(e>yn))T Vst

Yo = nth! (nth")
~v1 = sym (nth? (nth® ~))
Yo = nth'
St (An.e)>y) 7" — (An.e>2) (057 §m)

S_CPuUsH

S_TRANS
Yhp (e>y1)>y2 — ed>(71§72)

Yhpe—¢€
S_CAsT

Yhpery— e >y

Yhpe—¢€
S_TICK

Y bop efticky — € [tick)

Yhpe—¢

— - S_CASE
Y kp case eas nreturnrtofalt; — case e’ asnreturntof alt;

R A
alt; = K o™ " 1.7 S

c

— 7 S_MATCHDATA
> Kp case K 7/, 7y ve.Casnreturntofall, — v

b
w =uln—ellap = op] [z e

altj =lit - u
— S_MATCHLIT
Y kp caselitas nreturntof alt;, — u[n — lit]

alty =_ = u

no other case matches
7 S_MATCHDEFAULT
Y kp case casnreturnrtofalt;, — un — €

_ ! —Fa . .
T7,*"~5 T, = coercionKindy

Vag e “ By Fr.¢ — Tag™ * = dataConRepType K
C

e/, = e, > (11 c[ora™ — nth®~]“ [By" — ()])

p— S_CAsePusH
Y kp case (K730, e:°) >yas nreturn, of alt; —

—a__}—cC —_
case K 7! 7y b el “asnreturn; of alt;

21

S_LETNONREC

Yhpletn=eine; — ex[n > e]

3, [ng— ei]i Fop 4 —> o
S_LETREC

Y hpletrecm;, =¢'inu — letrecn; = ¢ *in v’

S_LETRECAPP

Yt (letrecn; = ¢ “inu) ¢/ — letrecn; = ¢; 'in(ue€’)

S_LETRECCAST

Y kp (letrecn; = g linu)>y — letrecm; = ¢ ‘in (ub7)

_ — S_LETRECCASE
Y kp case (letrec?; = ¢; ' inu) as no return 7 of alt;” —

. —J
letrecm;, =¢;'in(case uas noreturnrofalt;”)

S_LETRECFLAT

. ——J . . .
Y kp letrecm; = eﬂln(letrecnj’- = ej’- inu) — letrecn; = ¢ °; nj’ =e¢; inu

folu)Nm; b =-

Y hpletrecm; =¢;"inu — u

S_LETRECRETURN

5.4 Notes

e The S_LETREC rules implement recursion. S_LETREC adds to the context ¥ bindings for all of the
mutually recursive equations. Then, after perhaps many steps, when the body of the let rec contains
no variables that are bound in the let rec, the context is popped in S_.LETRECRETURN. The other

S_LETRECXXX rules are there to prevent reduction from getting stuck.

e In the case rules, a constructor K is written taking three lists of arguments: two lists of types and a
list of terms. The types passed in are the universally and, respectively, existentially quantified type
variables to the constructor. The terms are the regular term arguments stored in an algebraic datatype.

Coercions (say, in a GADT) are considered term arguments.
e The rule S_.CASEPUSH is the most complex rule.

— The logic in this rule is implemented in coreSyn/CoreSubst.lhs:exprIsConApp maybe.

— The coercionKind function (types/Coercion.lhs:coercionKind) extracts the two types (and their
kinds) from a coercion. It does not require a typing context, as it does not check the coercion,

just extracts its types.

22

— The dataConRepType function (basicTypes/DataCon.lhs:dataConRepType) extracts the full type
of a data constructor. Following the notation for constructor expressions, the parameters to the
constructor are broken into three groups: universally quantified types, existentially quantified
types, and terms.

— The substitutions in the last premise to the rule are unusual: they replace type variables with co-
ercions. This substitution is called lifting and is implemented in types/Coercion.lhs:1iftCoSubst.
The notation is essentially a pun on the fact that types and coercions have such similar structure.
This operation is quite non-trivial. Please see System FC with Ezplicit Kind Equality for details.

— Note that the types a5 > the existentially quantified types—do not change during this step.

23

