|
||||||||||
PREV CLASS NEXT CLASS | FRAMES NO FRAMES | |||||||||
SUMMARY: NESTED | FIELD | CONSTR | METHOD | DETAIL: FIELD | CONSTR | METHOD |
java.lang.Objectno.uib.cipr.matrix.AbstractMatrix
no.uib.cipr.matrix.LowerSymmPackMatrix
no.uib.cipr.matrix.LowerSPDPackMatrix
public class LowerSPDPackMatrix
Lower symmetrical positive definite packed matrix. Same layout as
LowerSymmPackMatrix
. This
class does not enforce the SPD property, but serves as a tag so that more
efficient algorithms can be used in the solvers.
Nested Class Summary |
---|
Nested classes/interfaces inherited from interface no.uib.cipr.matrix.Matrix |
---|
Matrix.Norm |
Field Summary |
---|
Fields inherited from class no.uib.cipr.matrix.AbstractMatrix |
---|
numColumns, numRows |
Constructor Summary | |
---|---|
LowerSPDPackMatrix(int n)
Constructor for LowerSPDPackMatrix |
|
LowerSPDPackMatrix(Matrix A)
Constructor for LowerSPDPackMatrix |
|
LowerSPDPackMatrix(Matrix A,
boolean deep)
Constructor for LowerSPDPackMatrix |
Method Summary | |
---|---|
LowerSPDPackMatrix |
copy()
Creates a deep copy of the matrix |
double[] |
getData()
Returns the matrix contents. |
Vector |
multAdd(double alpha,
Vector x,
Vector y)
y = alpha*A*x + y |
Matrix |
rank1(double alpha,
Vector x,
Vector y)
A = alpha*x*yT + A . |
Matrix |
rank2(double alpha,
Vector x,
Vector y)
A = alpha*x*yT + alpha*y*xT + A . |
Matrix |
set(Matrix B)
A=B . |
Matrix |
solve(Matrix B,
Matrix X)
X = A\B . |
Vector |
solve(Vector b,
Vector x)
x = A\b . |
Vector |
transMultAdd(double alpha,
Vector x,
Vector y)
y = alpha*AT*x + y |
Matrix |
transpose()
Transposes the matrix in-place. |
Matrix |
transSolve(Matrix B,
Matrix X)
X = AT\B . |
Vector |
transSolve(Vector b,
Vector x)
x = AT\b . |
Matrix |
zero()
Zeros all the entries in the matrix, while preserving any underlying structure. |
Methods inherited from class no.uib.cipr.matrix.LowerSymmPackMatrix |
---|
add, get, set |
Methods inherited from class no.uib.cipr.matrix.AbstractMatrix |
---|
add, add, check, checkMultAdd, checkMultAdd, checkRank1, checkRank1, checkRank2, checkRank2, checkSize, checkSolve, checkSolve, checkTransABmultAdd, checkTransAmultAdd, checkTransBmultAdd, checkTransMultAdd, checkTranspose, checkTranspose, checkTransRank1, checkTransRank2, isSquare, iterator, max, max, mult, mult, mult, mult, multAdd, multAdd, multAdd, norm, norm1, normF, normInf, numColumns, numRows, rank1, rank1, rank1, rank1, rank1, rank2, rank2, rank2, scale, set, toString, transABmult, transABmult, transABmultAdd, transABmultAdd, transAmult, transAmult, transAmultAdd, transAmultAdd, transBmult, transBmult, transBmultAdd, transBmultAdd, transMult, transMult, transMultAdd, transpose, transRank1, transRank1, transRank2, transRank2 |
Methods inherited from class java.lang.Object |
---|
clone, equals, finalize, getClass, hashCode, notify, notifyAll, wait, wait, wait |
Constructor Detail |
---|
public LowerSPDPackMatrix(int n)
n
- Size of the matrix. Since the matrix must be square, this
equals both the number of rows and columnspublic LowerSPDPackMatrix(Matrix A)
A
- Matrix to copy contents from. Only the entries of the relevant
part are copiedpublic LowerSPDPackMatrix(Matrix A, boolean deep)
A
- Matrix to copy contents from. Only the entries of the relevant
part are copieddeep
- True if the copy is deep, else false (giving a shallow copy).
For shallow copies, A
must be a packed matrixMethod Detail |
---|
public LowerSPDPackMatrix copy()
Matrix
copy
in interface Matrix
copy
in class LowerSymmPackMatrix
public Matrix solve(Matrix B, Matrix X)
Matrix
X = A\B
. Not all matrices support this operation, those
that do not throw UnsupportedOperationException
. Note
that it is often more efficient to use a matrix decomposition and its
associated solver
solve
in interface Matrix
B
- Matrix with the same number of rows as A
, and
the same number of columns as X
X
- Matrix with a number of rows equal A.numColumns()
,
and the same number of columns as B
public Vector multAdd(double alpha, Vector x, Vector y)
Matrix
y = alpha*A*x + y
multAdd
in interface Matrix
multAdd
in class AbstractMatrix
x
- Vector of size A.numColumns()
y
- Vector of size A.numRows()
public Vector transMultAdd(double alpha, Vector x, Vector y)
Matrix
y = alpha*AT*x + y
transMultAdd
in interface Matrix
transMultAdd
in class AbstractMatrix
x
- Vector of size A.numRows()
y
- Vector of size A.numColumns()
public Matrix rank1(double alpha, Vector x, Vector y)
Matrix
A = alpha*x*yT + A
. The matrix must be
square, and the vectors of the same length
rank1
in interface Matrix
rank1
in class AbstractMatrix
public Matrix rank2(double alpha, Vector x, Vector y)
Matrix
A = alpha*x*yT + alpha*y*xT + A
.
The matrix must be square, and the vectors of the same length
rank2
in interface Matrix
rank2
in class AbstractMatrix
public Vector solve(Vector b, Vector x)
Matrix
x = A\b
. Not all matrices support this operation, those
that do not throw UnsupportedOperationException
. Note
that it is often more efficient to use a matrix decomposition and its
associated solver
solve
in interface Matrix
solve
in class AbstractMatrix
b
- Vector of size A.numRows()
x
- Vector of size A.numColumns()
public Matrix transSolve(Matrix B, Matrix X)
Matrix
X = AT\B
. Not all matrices support this
operation, those that do not throw
UnsupportedOperationException
. Note that it is often more
efficient to use a matrix decomposition and its associated transpose
solver
transSolve
in interface Matrix
transSolve
in class AbstractMatrix
B
- Matrix with a number of rows equal A.numColumns()
,
and the same number of columns as X
X
- Matrix with the same number of rows as A
, and
the same number of columns as B
public Vector transSolve(Vector b, Vector x)
Matrix
x = AT\b
. Not all matrices support this
operation, those that do not throw
UnsupportedOperationException
. Note that it is often more
efficient to use a matrix decomposition and its associated solver
transSolve
in interface Matrix
transSolve
in class AbstractMatrix
b
- Vector of size A.numColumns()
x
- Vector of size A.numRows()
public Matrix transpose()
Matrix
transpose
in interface Matrix
transpose
in class AbstractMatrix
public double[] getData()
public Matrix set(Matrix B)
Matrix
A=B
. The matrices must be of the same size
set
in interface Matrix
set
in class AbstractMatrix
public Matrix zero()
Matrix
zero
in interface Matrix
zero
in class AbstractMatrix
|
||||||||||
PREV CLASS NEXT CLASS | FRAMES NO FRAMES | |||||||||
SUMMARY: NESTED | FIELD | CONSTR | METHOD | DETAIL: FIELD | CONSTR | METHOD |